Category Archives: Uncategorized

Caffeine stirs our memory

A jolt of caffeine can boost memory, according to a recent study that provides a scientific motive for students slurping coffee, tea or energy drinks when cramming for exams.

Cup of coffee

A team at Johns Hopkins University in Baltimore, Maryland, found that caffeine enhances certain memories for at least a day after they were formed.

Evidence for caffeine as a memory booster has been anecdotal until now.

Birth of Black Hole Kills the Radio Star

These exploding stars use all of their energy to emit one last strong beam of highly energetic radiation — known as a gamma-ray burst — before they die.

Up until now, it was thought all gamma-ray bursts were followed by a radio afterglow — a premise that a team of Australian astronomers of the Centre for All-sky Astrophysics (CAASTRO) at Curtin University and the University of Sydney originally set out to prove correct.

“But we were wrong. After studying an ultra-sensitive image of gamma-ray bursts with no afterglow, we can now say the theory was incorrect and our telescopes have not failed us,” lead researcher and Curtin research fellow Dr Paul Hancock said.

The technique used to create the ultra-sensitive image was recently published in The Astrophysical Journal.

It allowed for the stacking of 200 separate observations on top of each other to re-create the image of a gamma-ray burst in much better quality — yet, no trace of a radio afterglow was found.

“In our research paper we argue that there must be two distinct types of gamma-ray burst, likely linked to differences in the magnetic field of the exploding star,” Dr Hancock said.

“Gamma-ray bursts are thought to mark the birth of a Black Hole or Neutron Star — both of which have super-dense cores. But Neutron Stars have such strong magnetic fields (a million times stronger than those of Black Holes) that producing gamma-rays are more difficult.

“We think that those stars that collapse to form a Neutron Star have energy left over to produce the radio afterglow whereas those that become Black Holes put all their energy into one final powerful gamma-ray flash.”

New work is underway to test the team’s theory and to see if there are other subtle ways in which the two types of bursts differ.

“We now have to take a whole new look at gamma-ray bursts — so far this work has shown that being wrong is sometimes more interesting than being right,” Dr Hancock said.

Telescope facilities such as the Australia Telescope Compact Array in northern New South Wales and the Karl Jansky Very Large Array in the US both have observing programs to search for gamma-ray burst afterglows and have been recently upgraded to increase their sensitivity.





Source: Sciencedaily

Quantum world record smashed

A normally fragile quantum state has been shown to survive at room temperature for a world record 39 minutes, overcoming a key barrier towards building ultrafast quantum computers.


An international team including Stephanie Simmons of Oxford University, UK, report in this week’s Science a test performed by Mike Thewalt of Simon Fraser University, Canada, and colleagues. In conventional computers data is stored as a string of 1s and 0s. In the experiment quantum bits of information, ‘qubits’, were put into a ‘superposition’ state in which they can be both 1s and 0 at the same time – enabling them to perform multiple calculations simultaneously.

In the experiment the team raised the temperature of a system, in which information is encoded in the nuclei of phosphorus atoms in silicon, from -269 °C to 25 °C and demonstrated that the superposition states survived at this balmy temperature for 39 minutes – outside of silicon the previous record for such a state’s survival at room temperature was around two seconds. The team even found that they could manipulate the qubits as the temperature of the system rose, and that they were robust enough for this information to survive being ‘refrozen’ (the optical technique used to read the qubits only works at very low temperatures).

’39 minutes may not seem very long but as it only takes one-hundred-thousandth of a second to flip the nuclear spin of a phosphorus ion – the type of operation used to run quantum calculations – in theory over 20 million operations could be applied in the time it takes for the superposition to naturally decay by one percent. Having such robust, as well as long-lived, qubits could prove very helpful for anyone trying to build a quantum computer,’ said Stephanie Simmons of Oxford University’s Department of Materials, an author of the paper.

‘This opens up the possibility of truly long-term coherent information storage at room temperature,’ said Mike Thewalt of Simon Fraser University.

The team began with a sliver of silicon doped with small amounts of other elements, including phosphorus. Quantum information was encoded in the nuclei of the phosphorus atoms: each nucleus has an intrinsic quantum property called ‘spin’, which acts like a tiny bar magnet when placed in a magnetic field. Spins can be manipulated to point up (0), down (1), or any angle in between, representing a superposition of the two other states.

The team prepared their sample at just 4 °C above absolute zero (-269 °C) and placed it in a magnetic field. Additional magnetic field pulses were used to tilt the direction of the nuclear spin and create the superposition states. When the sample was held at this cryogenic temperature, the nuclear spins of about 37 per cent of the ions – a typical benchmark to measure quantum coherence – remained in their superposition state for three hours. The same fraction survived for 39 minutes when the temperature of the system was raised to 25 °C.

‘These lifetimes are at least ten times longer than those measured in previous experiments,’ said Stephanie Simmons. ‘We’ve managed to identify a system that seems to have basically no noise. They’re high-performance qubits.’

There is still some work ahead before the team can carry out large-scale quantum computations. The nuclear spins of the 10 billion or so phosphorus ions used in this experiment were all placed in the same quantum state. To run calculations, however, physicists will need to place different qubits in different states. ‘To have them controllably talking to one another – that would address the last big remaining challenge,’ said Simmons.





Source: via EurekAlert!