Monthly Archives: July 2015

Researchers design first artificial ribosome

Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins and enzymes within the cell. The engineered ribosome may enable the production of new drugs and next-generation biomaterials and lead to a better understanding of how ribosomes function. The artificial ribosome, called Ribo-T, was created in the laboratories of Alexander Mankin, director of the UIC College of Pharmacy’s Center for Biomolecular Sciences, and Northwestern’s Michael Jewett, assistant professor of chemical and biological engineering. The human-made ribosome may be able to be manipulated in the laboratory to do things natural ribosomes cannot do.11-researchersd

Researchers predict material with record-setting melting point

Using powerful computer simulations, researchers from Brown University have identified a material with a higher melting point than any known substance. The computations, described in the journal Physical Review B(Rapid Communications), showed that a material made with just the right amounts of hafnium, nitrogen, and carbon would have a melting point of more than 4,400 kelvins (7,460 degrees Fahrenheit). That’s about two-thirds the temperature at the surface of the sun, and 200 kelvins higher than the highest melting point ever recorded experimentally.2015072811331290

UT Dallas nanotechnology research leads to super-elastic conducting fibers

An international research team based at The University of Texas at Dallas has made electrically conducting fibers that can be reversibly stretched to over 14 times their initial length and whose electrical conductivity increases 200-fold when stretched. The research team is using the new fibers to make artificial muscles, as well as capacitors whose energy storage capacity increases about tenfold when the fibers are stretched. Fibers and cables derived from the invention might one day be used as interconnects for super-elastic electronic circuits; robots and exoskeletons having great reach; morphing aircraft; giant-range strain sensors; failure-free pacemaker leads; and super-stretchy charger cords for electronic devices.


In a study published in the July 24 issue of the journal Science, the scientists describe how they constructed the fibers by wrapping lighter-than-air, electrically conductive sheets of tiny carbon nanotubes to form a jelly-roll-like sheath around a long rubber core.