Monthly Archives: March 2014

New discovery finds missing hormone in birds

How does the Arctic tern (a sea bird) fly more than 80,000 miles in its roundtrip North Pole-to-South Pole migration? How does the Emperor penguin incubate eggs for months during the Antarctic winter without eating? How does the Rufous hummingbird, which weighs less than a nickel, migrate from British Columbia to Mexico? These physiological gymnastics would usually be influenced by leptin, the hormone that regulates body fat storage, metabolism and appetite. However, leptin has gone missing in birds — until now. University of Akron researchers have discovered leptin in birds, In their “Discovery of the Elusive Leptin in Birds: Identification of Several ‘Missing Links’ in the Evolution of Leptin and its Receptor,” published March 24, 2014, in the journal PLOS ONE, UA researchers reveal their findings of leptin in the peregrine falcon, mallard duck and zebra finch.

UA Professor of Biology R. Joel Duff made the initial discovery by comparing ancient fish and reptile leptins to predict the bird sequence. Duff, along with undergraduate students Cameron Schmidt and Donald Gasper, identified the sequence in multiple bird genomes and found that the genomic region where leptin was found is similar to that of other vertebrates. Jeremy Prokop, a former UA Integrated Bioscience doctoral student

Logical circuits built using living slime molds


A Future computer might be a lot slimier than the solid silicon devices we have today. In a study published in the journal Materials Today, European researchers reveal details of logic units built using living slime molds, which might act as the building blocks for computing devices and sensors.

Andrew Adamatzky (University of the West of England, Bristol, UK) and Theresa Schubert (Bauhaus-University Weimar, Germany) have constructed logical circuits that exploit networks of interconnected slime mold tubes

New way to filter light


Light waves can be defined by three fundamental characteristics: their color (or wavelength), polarization, and direction. While it has long been possible to selectively filter light according to its color or polarization, selectivity based on the direction of propagation has remained elusive.

But now, for the first time, MIT researchers have produced a system that allows light of any color to pass through only if it is coming from one specific angle; the technique reflects all light coming from other directions. This new approach could ultimately lead to advances in solar photovoltaics, detectors for telescopes and microscopes, and privacy filters for display screens.

The work is described in a paper appearing