Monthly Archives: December 2013

Gene That Influences the Ability to Remember Faces Identified

A team of researchers from Yerkes National Primate Research Center at Emory University in Atlanta, the University College London in the United Kingdom and University of Tampere in Finland made the discovery, which will be published in an online Early Edition of Proceedings of the National Academy of Sciences.

According to author Larry Young, PhD, of Yerkes, the Department of Psychiatry in Emory’s School of Medicine and Emory’s Center for Translational Social Neuroscience (CTSN), this is the first study to demonstrate that variation in the oxytocin receptor gene influences face recognition skills. He and co-author David Skuse point out the implication that oxytocin plays an important role in promoting our ability to recognize one another, yet about one-third of the population possesses only the genetic variant that negatively impacts that ability. They say this finding may help explain why a few people remember almost everyone they have met while others have difficulty recognizing members of their own family.

Skuse is with the Institute of Child Health, University College London, and the Great Ormond Street Hospital for Children, NHS Foundation Trust, London.

Young, Skuse and their research team studied 198 families with a single autistic child because these families were known to show a wide range of variability in facial recognition skills; two-thirds of the families were from the United Kingdom, and the remainder from Finland.

The Emory researchers previously found the oxytocin receptor is essential for olfactory-based social recognition in rodents, like mice and voles, and wondered whether the same gene could also be involved in human face recognition. They examined the influence of subtle differences in oxytocin receptor gene structure on face memory competence in the parents, non-autistic siblings and autistic child, and discovered a single change in the DNA of the oxytocin receptor had a big impact on face memory skills in the families. According to Young, this finding implies that oxytocin likely plays an important role more generally in social information processing, which is disrupted in disorders such as autism.

Additionally, this study is remarkable for its evolutionary aspect. Rodents use odors for social recognition while humans use visual facial cues. This suggests an ancient conservation in genetic and neural architectures involved in social information processing that transcends the sensory modalities used from mouse to man.

Skuse credits Young’s previous research that found mice with a mutated oxytocin receptor failed to recognize mice they previously encountered. “This led us to pursue more information about facial recognition and the implications for disorders in which social information processing is disrupted.” Young adds the team will continue working together to pursue strategies for improving social cognition in psychiatric disorders based on the current findings.

 

 

 

 

 

Source: Sciencedaily

What Sharks, Honeybees and Humans Have in Common

A mathematical pattern of movement called a Lévy walk describes the foraging behavior of animals from sharks to honey bees, and now for the first time has been shown to describe human hunter-gatherer movement as well. The study, led by University of Arizona anthropologist David Raichlen, was published today in the Proceedings of the National Academy of Sciences.

The Lévy walk pattern appears to be ubiquitous in animals, similar to the golden ratio, phi, a mathematical ratio that has been found to describe proportions in plants and animals throughout nature.

“Scientists have been interested in characterizing how animals search for a long time,” said Raichlen, an associate professor in the UA School of Anthropology, “so we decided to look at whether human hunter-gatherers use similar patterns.”

Funded by a National Science Foundation grant awarded to study co-author Herman Pontzer, Raichlen and his colleagues worked with the Hadza people of Tanzania.

The Hadza are one of the last big-game hunters in Africa, and one of the last groups on Earth to still forage on foot with traditional methods. “If you want to understand human hunter-gatherer movement, you have to work with a group like the Hadza,” Raichlen said.

Members of the tribe wore wristwatches with GPS units that tracked their movement while on hunting or foraging bouts. The GPS data showed that while the Hadza use other movement patterns, the dominant theme of their foraging movements is a Lévy walk — the same pattern used by many other animals when hunting or foraging.

“Detecting this pattern among the Hadza, as has been found in several other species, tells us that such patterns are likely the result of general foraging strategies that many species adopt, across a wide variety of contexts,” said study co-author Brian Wood, an anthropologist at Yale University who has worked with the Hadza people since 2004.

“This movement pattern seems to occur across species and across environments in humans, from East Africa to urban areas,” said Adam Gordon, study co-author and a physical anthropologist at the University at Albany, State University of New York. “It shows up all across the world in different species and links the way that we move around in the natural world. This suggests that it’s a fundamental pattern likely present in our evolutionary history.”

The Lévy walk, which involves a series of short movements in one area and then a longer trek to another area, is not limited to searching for food. Studies have shown that humans sometimes follow a Lévy walk while ambling around an amusement park. The pattern also can be used as a predictor for urban development.

“Think about your life,” Raichlen said. “What do you do on a normal day? Go to work and come back, walk short distances around your house? Then every once in a while you take these long steps, on foot, bike, in a car or on a plane. We tend to take short steps in one area and then take longer strides to get to another area.”

Following a Lévy walk pattern does not mean that humans don’t consciously decide where they are going, Raichlen said. “We definitely use memories and cues from the environment as we search,” he explained, “but this pattern seems to emerge in the process.”

In future studies, Raichlen and his colleagues hope to understand the reasons for using a Lévy walk and whether the pattern is determined by the distribution of resources in the environment.

“We’re very interested in studying why the Hadza use this pattern, what’s driving their hunting strategies and when they use this pattern versus another pattern,” said Pontzer, a member of the research team and an anthropologist at Hunter College in New York.

“We’d really like to know how and why specific environmental conditions or individual traits influence movement patterns,” added Wood.

Describing human movement patterns could also help anthropologists to understand how humans transported raw materials in the past, how our home ranges expanded and how we interact with our environment today, Raichlen noted.

“We can characterize these movement patterns across different human environments, and that means we can use this movement pattern to understand past mobility,” Raichlen said. “Also, finding patterns in nature is always fun.”

 

 

 

 

Source: Sciencedaily

 

What Does Compassion Sound Like?

Rochester researchers believe they are the first to systematically pinpoint and catalogue compassionate words and actions in doctor-patient conversations. By breaking down the dialogue and studying the context, scientists hope to create a behavioral taxonomy that will guide medical training and education.

“In health care, we believe in being compassionate but the reality is that many of us have a preference for technical and biomedical issues over establishing emotional ties,” said senior investigator Ronald Epstein, M.D., professor of Family Medicine, Psychiatry, Oncology, and Nursing and director of the UR Center for Communication and Disparities Research.

Epstein is a national and international keynote speaker and investigator on mindfulness and communication in medical education.

His team recruited 23 oncologists from a variety of private and hospital-based oncology clinics in the Rochester, N.Y., area. The doctors and their stage III or stage IV cancer patients volunteered to be recorded during routine visits. Researchers then analyzed the 49 audio-recorded encounters that took place between November 2011 and June 2012, and looked for key observable markers of compassion.

In contrast to empathy — another quality that Epstein and his colleagues have studied in the medical community — compassion involves a deeper and more active imagination of the patient’s condition. An important part of this study, therefore, was to identify examples of the three main elements of compassion: recognition of suffering, emotional resonance, and movement towards addressing suffering.

Emotional resonance, or a sense of sharing and connection, was illustrated by this dialogue: Patient: “I should just get a room here.” Oncologist: “Oh, I hope you don’t really feel like you’re spending that much time here.”

Another conversation included this response from a physician to a patient, who complained about a drug patch for pain: “Who wants a patch that makes you drowsy, constipated and fuzzy? I’ll pass, thank you very much.”

Some doctors provided good examples of how they use humor to raise a patient’s spirits without deviating from the seriousness of the situation. In one case, for example, a patient was concerned that he would not be able to drink two liters of barium sulfite in preparation for a CT scan.

Doctor: “If you just get down one little cup it will tell us what’s going on in the stomach. What I tell people when we’re not being recorded is to take a cup and then pour the rest down the toilet and tell them you drank it all (laughter)… Just a creative interpretation of what you are supposed to take.”

Patient: “I love it, I love it. Well, I thank you for that. I’m prepared to do what I’ve got to do to get this right.”

Researchers evaluated tone of voice, animation that conveyed tenderness and understanding, and other ways in which doctors gave reassurances or psychology comfort.

Here’s an instance in which an oncologist encouraged a reluctant patient to follow through with a planned trip to Arizona: “You know, if you decide to do it, break down and allow somebody to meet you at the gates and use a cart or wheelchair to get you to your next gate and things like that. And having just sent my father-in-law off to Hawaii and told him he had to do that, he said no, no, I can get there. Just, it’s okay. Nobody is gonna look at you and say, ‘What’s an able-bodied man doing in a cart?’ Just, it’s okay. It’s part of setting limits.”

Researchers also observed non-verbal communication, such as pauses or sighs at appropriate times, as well as speech features and voice quality (tone, pitch, loudness) and other metaphorical language that conveyed certain attitudes and meaning.

Compassion unfolds over time, researchers concluded. During the process, physicians must challenge themselves to stay with a difficult discussion, which opens the door for the patient to admit uncertainty and grieve the loss of normalcy in life.

“It became apparent that compassion is not a quality of a single utterance but rather is made up of presence and engagement that suffuses an entire conversation,” the study said.

 

 

 

 

Source: Sciencedaily